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Abstract. We present a technique for building itinerant electron states as approximate 
ground states to the spin half Anderson lattice Hamiltonian. We choose one fermionic state 
per site from amongst the two initial states, in the most general mathematical manner. 
Restricting the application of the Hamiltonian to states where only this special state is 
non-empty, we minimise the restricted energy in the Hartree-Fock approximation. Treating 
the initial choice of the relevant fermion as a variable, we then minimise the Hartree-Fock 
energy over this choice. The resulting energy is an upper bound on the ground state energy 
because the variational principle underpins our technique. Since we are forcing an itinerant 
solution onto the problem, this technique fails when the solution involves localised electrons 
behaving as spins together with non-interacting electrons. There are however large regions 
of parameter space where the energy found is less than the best localised solutions. We treat 
on-site hybridisation, nearest-neighbour hybridisation and Coulomb repulsion between the 
two types of electron with equal ease. Finally we consider speculative applications to 
the u-Ce to 7-Ce phase transition and a more reasonable application to the magnetic 
phase transitions in CeNi,Ptl-, and CeNi,Pdl-, and the similar systems CeSiz-, and 
CeSi2-,Ge,y. 

1. Introduction 

Most systems with an unfilled shell of localised electrons show local moment behaviour 
at high temperatures and magnetic coherence at low temperatures. The simple phys- 
ical picture is that of well defined atomic spins which interact with each other by 
superexchange or more commonly in metals, by the RKKY interaction. 

Some such materials show quite different properties at low temperatures. There is 
a class of materials which go under the loose name of ‘intermediate valence’ (IV) [l], 
which can show itinerant behaviour at low temperatures, with the electrons at the 
Fermi surface having the character of the localised electrons. What do we mean by 
‘localised’, when such electrons can yield a Fermi surface? 

The ‘localised’ electrons in these systems are usually composed of nearly atomic 
states which have high angular momentum; namely the d electrons or the more 
interesting f electrons. The spatial wavefunctions for these states are normally compact 
and are often essentially zero outside of an atomic cell. This leads to two important 
physical consequences. Firstly the compact nature of the wavefunctions leads to very 
strong correlations between such electrons on the same site. The overlap of such 
electrons is large and so the Coulomb repulsion between such electrons is huge. Indeed 
one usually finds an energetic barrier of several electron volts separating the different 
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charge states of the localised shell. Secondly the overlap between orbitals on two 
nearest-neighbour sites is often negligible (the Hill limit) in which case the usual 
hybridisation effects leading to the electronic motion are absent and more subtle effects 
take over. 

For most systems the chemical potential lies well away from any of the localised 
shell levels and the charge degrees of freedom are effectively ‘frozen out’. If the shell 
is only partially filled, then the residual spin degrees of freedom control the low- 
temperature physics and yield the normal magnetic coherence. For the intermediate 
valence systems, the chemical potential lies ‘near’ one of the localised atomic shell levels 
and one finds atoms with both of the relevant charge states. One expects the atomic 
shell to have a probability of being found in either of the two charge states. How does 
the charge degree of freedom for these highly correlated electrons behave? 

Some mixed or intermediate valence materials show paramagnetic behaviour down 
to very low temperatures. Indeed, even for heavy-fermion materials one finds well 
defined Fermi surfaces with de Haas-van Alfen [2], and seemingly excellent Fermi 
liquid behaviour. The question we wish to address in this article is: how can we generate 
a natural single-particle description of a system which is composed predominately of 
highly correlated electrons? 

The essential ingredient in a model which describes an intermediate valence system, 
is the existence of two types of states. Firstly one requires the highly correlated 
electrons with two energetically accessible charge states and secondly one requires the 
more mobile electrons that mediate the interaction between the localised states. 

The simplest example of such a model is the Anderson lattice [3], which is a tight- 
binding Hamiltonian which includes only short-range Coulomb interactions. Longer- 
range Coulomb effects are assumed screened by ‘plasmon’-like collective motion of the 
other electrons. The Hamiltonian is: 

io ( i? )G  

where f,k is a creation operator for the localised electron with spin 0 on site i, c:, 
is the corresponding operator for the nearly free ‘conduction’ electrons, 8 denotes 
the complementary spin to CJ and (ii’) denote all nearest-neighbour pairs of sites, i 
and i’. We are using the spin-half variant of this model. The large-spin-degeneracy 
version is much used in the study of heavy-fermion systems [4]. The restriction to two 
relevant charge states for the localised shell is enforced with the limit that the Coulomb 
repulsion between two electrons in the same localised orbital on the same site diverges, 
U H CO. The two relevant charge states find the localised orbital either vacant or singly 
occupied. There are five relevant energy scales in this problem, but we will tend to 
consider them two or three at a time. We have the energy distance between the localised 
state and the centre of the conduction band, S ,  the half band width of the conduction 
electrons, W = X t ,  where X is the number of nearest neighbours, the hybridisation 
energy between the localised and conduction electrons, V ,  the hybridisation between 
electrons of the two sorts on neighbouring sites, H = X h ,  and the repulsion between a 
localised and conduction electron on the same site, G. 

We are now in a position to address our problem, namely, how can we achieve a 
paramagnetic Fermi surface composed predominately of localised electrons? Firstly we 
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should ask: why is this a problem? In order to have a paramagnetic Fermi surface, one 
requires a charge degree of freedom and secondly one requires a spin symmetry for the 
paramagnetism. In essence this ensures two Fermi surfaces, one for spin up excitations 
and one for spin down excitations, which are mapped onto each other by the spin 
symmetry. For our simple model, if we restrict attention to the localised level, there 
is only one charge degree of freedom to make two Fermi surfaces out of. One would 
usually expect the spin symmetry to become broken and to associate a single spin with 
the charge degree of freedom. In this article we will show how to encorporate some 
of the conduction electrons charge degrees of freedom into a consistent paramagnetic 
description for the system. 

There is another important physical fact to bear in mind. The localised electrons 
cannot hybridise directly with each other. In the model, the only way that they can 
move is by hybridising with the mobile conduction electrons through the hybridisation 
energy scales, V or H .  If V is very small, then the induced motion will be very 
slow. This is the physical motivation behind heavy-fermion behaviour [ 5 ] .  In fact the 
electrons are still an order of magnitude heavier than single-particle estimates of V 
would suggest and a reduction in the effective size of V from the local correlations 
imposed by U is required. In these systems the charge carriers move very slowly, which 
is translated into a very large effective mass. Even with two orders of magnitude mass 
enhancement over the free electron mass, one can still observe a paramagnetic Fermi 
surface. We must analyse whether a description predicts this mass enhancement or not, 
with a view to understanding the cause of the enhancement. 

Other important physical effects are observed in intermediate valence systems. One 
of the most exciting effects is that of symmetry-preserving phase transitions. These 
are first-order changes including volume changes and sharp changes in conducting 
properties. These have been associated with changes in valence, electrons changing their 
character from localised states to itinerant states and vice versa. The Falicov-Kimball 
model has often been used in discussions of this problem [6]. The Falicov-Kimball 
model is the Anderson lattice with the Coulomb repulsion, G, between the localised 
and conduction electrons playing a dominant role. Although the transition is attributed 
to this additional repulsion, we will be able to apply our techniques to this generalised 
model with no appreciable change in order to test some of the conclusions of their 
work. 

There have been numerous attempts at unravelling the physics of intermediate 
valence, but almost all have avoided the basic stability question: what is the phase 
diagram of the Anderson lattice? The major strength of our technique is that it 
gives an unbiased answer to this question, predicting magnetic, paramagnetic and even 
superconducting ground states as the parameters are varied. By using the optimal single- 
particle wavefunction, we can control the stability criteria using the well understood 
Hartree-Fock approximation. We are aware of no comparable work in the literature. 

There are three exactly soluble limits for the Anderson lattice and our techniques 
will yield two of these. Firstly there is the limit where the localised level is empty 
and we find the non-interacting paramagnetic solution for the conduction electrons. 
Secondly there is the atomic limit where the hybridisation between neighbouring sites 
vanishes and we are left with independent atoms. Thirdly there is the limit where 
the hybridisation between the localised and conduction electrons vanishes and the two 
systems decouple. The last limit is that in which the charge carriers in the localised 
system become very slow and so this is the natural limit for studying heavy fermions. 
Oddly enough, the limit our technique fails to describe very well is the third limit. 
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The initial description involves both the localised operators, j’;, and the dominant 
energy scale, U ,  in an intimately coupled way. The effect of the Coulomb repulsion, 
U ,  is to prohibit sites with double occupancy of localised electrons in real space. 
The solution we desire involves a reciprocal space Fermi surface. The basic technical 
problem is to develop a way simultaneously to ensure the real space constraint while 
building a wavefunction with reciprocal space phase coherence. The basic idea is to 
choose a ‘variable’ basis. We choose a local basis of fermionic states which is quite 
general and is allowed to vary. We then construct a single-particle state from this basis 
and determine its energy. We then allow the local basis to vary in such a way as to 
minimise the energy of the single-particle delocalised state. In this way, we not only 
choose the best reciprocal space phase coherence, we also choose to use the optimal 
local basis which avoids the prohibited double occupancy of localised levels. In our 
description we find that the choice of local basis depends strongly on the number of 
electrons in the system as well as the particular values that the parameters take. 

Since our construction involves a single-particle state, we can also ask questions 
about the stability of the state. The most important stability criterion is whether 
the itinerant state is stable when compared to an atomic state. This comparison is 
between the ‘normal’ state with well defined spins and magnetic coherence and the more 
interesting itinerant paramagnetic state. This is a total energy calculation comparing 
the itinerant state with a typical atomic state. If the itinerant state is relatively stable in 
comparison to the atomic state, we can also ask whether it is locally stable with respect 
to other coherent states. The two obvious instabilities are with respect to itinerant 
magnetism and more interestingly towards a pairing instability and superconductivity. 

There are four known heavy-fermion superconductors [ 7 ] .  Some people think that 
the pairing mechanism finds its explanation in the correlations in these systems and 
not in the BCS phonon explanation [SI. Any pairing instability that we find can only 
be attributed to correlations. 

One can also show that the most natural Hamiltonian with which to describe the 
electronic properties of the perovskite ‘high- Tc’ superconductors, is an example of an 
Anderson lattice [22]. The special limit which best describes the copper oxide layer is 
restricted to zero conduction electron band width. 

The Anderson lattice has been treated many times before. Most treatments involve 
sophisticated analysis of the original basis. One of the most favoured techniques is that 
of ‘slave bosons’ [9]. As with most sophisticated treatments, the mathematical analysis 
involves uncontrolled approximations. For ‘slave bosons’ a mean-field treatment of the 
local constraint is the dubious step. The most important aspect to our calculational 
technique is that the variational principle underpins our calculations. Although we 
physically motivate the states we use, they may be considered as simple trial wavefunc- 
tions in a variational calculation. Our calculation is technically Hartree-Fock applied 
to a basis which has further variational parameters associated with the choice of states 
on each atom. Hartree-Fock is equivalent to a variational calculation where the space 
of variations is all single-particle determinants. The final parameters which define the 
choice of on-site states are optimised directly. We end up with an upper bound on the 
exact ground state energy which can be compared directly with other calculations. 

If the Hartree-Fock approximation were applied directly to the Anderson lattice, 
the infinite Coulomb repulsion, U ,  would either drive out the f electrons altogether or 
force them to become magnetic. Our technique obviates this problem. 

One of the major ‘mysteries’ of the intermediate valence and heavy-fermion prob- 
lems is ‘coherence’ [lo]. Simple descriptions in terms of the single impurity or Kondo 
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effect seem valid at reasonably high temperatures, but at low temperatures, unlike 
real impurity systems, Fermi liquid ‘coherence’ is observed. There is a need for an 
association between this ‘coherence’ and an intrinsic energy scale in the material and 
further there is also a possible order parameter to be associated with this ‘coherence’. 
These ideas should be considered as the ‘theme’ to the present article. All we are trying 
to do is to obtain such a ‘coherent’ state. 

In section 2 we will develop the paramagnetic state that we will associate with 
intermediate valence behaviour in cerium compounds. In section 3 we construct a 
magnetic intermediate valence state. This state has the properties of an itinerant 
strong-coupling magnet at low temperatures and not that of a ‘local moment’ magnet. 
In section 4 we analyse a few simple stability criteria for our intermediate valence 
phases and look in particular for pairing instabilities. In section 5 we calculate the 
properties of the states we have constructed and we include an analysis of relative 
stability and possible phase transitions to be expected. A simplistic discussion of the 
ryi  phase transition in cerium metal is found in section 6. The phase transitions in the 
systems CeNi,Pt,-,, CeNi,Pd,-, and the similar compounds CeSi,-,Ge,, CeSi,-, are 
modelled in sections 7 and 8, respectively. We draw conclusions in section 9. 

2. The paramagnetic state 

In this section we develop our variational wavefunction. Our physical motivation 
comes from the atomic limit where the hybridisation between conduction electrons on 
neighbouring sites vanishes and all the atoms become independent in real space. A 
single atomic Hamiltonian can be diagonalised exactly and the resulting basis of states 
can be used to consider the inclusion of a weak hopping potential. This was the method 
employed in our earlier work on this subject [ll].  The powerful fact that underpins 
this work is that the diagonalisation of the atomic Hamiltonian is a non-linear fermion 
transformation which mixes up the localised and conduction electrons in such a way 
that a unique fermion can describe states which are predominately localised electrons 
without reference to the infinite local Coulomb repulsion, U .  The problem with our 
earlier work is the implicit assumption that the band width, W ,  is small in comparison 
to the other relevant energy scales, S and V .  The most interesting effects occur when 
the band width, W ,  becomes the same order as the hybridisation, V .  In this article 
we will develop a description which involves the non-linear fermion transformation 
obviating the need for the Coulomb repulsion, U ,  combined with a variation which is 
usually exact when the band width becomes large. We can now leave the atomic limit. 

We consider the general non-linear transformation mapping a Hilbert space of two 
fermions onto itself. The initial basis, f jL  and c:,, is mapped onto a new basis, g,, 
and d:,. We force all states with two localised f electrons to belong to the subspace 
with non-zero g occupancy and then only consider the subspace of states with zero 
g occupancy from which to construct our variational wavefunction. The initial space 
has sixteen states. The infinite Coulomb repulsion ensures that four are energetically 
inaccessible. We are projecting away eight of the residual twelve states and this 
constitutes our approximation scheme. The remaining four states which constitute a 
single-fermion subspace are chosen quite generally, satisfying only the constraint that 
they are associated with a pure fermion, the d fermion. 

This general d fermion can be defined in terms of two parameters which we choose 

t 
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to be the angles, f3 and 4 

for the single-fermion state and: 

(2.14 

(2.1 b) 

for the two-fermion state. Note that we have not included a term from the doubly 
occupied localised orbital which is energetically inaccessible. These two angles are the 
variational parameters that we will determine by energy minimisation. 

In this section we will determine a good paramagnetic state by employing the 
Hartree-Fock approximation for the d fermion. This is very simple for the present 
example, since it simply involves constructing a non-interacting free electron state from 
the d fermions and finding its energy. 

Since we are dealing with nearest-neighbour interactions, there is only one function 
of wavevector from which to build the Fermi surface, and this may be chosen to be 
the normalised structure factor, y k  : 

where N is the number of atoms in the crystal. In terms of this quantity we can set up 
a density of states from which the energetics can be determined: 

The Fermi surface is independent of our choice of local basis and satisfies y k  = y F  for 
some Fermi structure factor. The electron number per spin, Do, and hybridisation per 
spin, D,,  are also independent of the particular choice of local basis we choose and at 
zero temperature satisfy: 

( 2 . 4 ~ )  

(2.4b) 

In this article we will employ a uniform density of states assumption for which we 

In the absence of g occupancy we can determine the restricted definitions of the 
have; Do = f ( 1  - y F )  and D ,  = ~ ( l  1 - y:)  = D o ( l  - D o ) .  

original operators in terms of the d fermion to find 

c;, = cos f3 dig (1 + yd;,dia) ( 2 . 5 ~ )  

with the non-linear hopping parameter which breaks particle-hole symmetry and leads 
to the interesting coherence effect: 

1 .  y = -sin1$tanf3+cos4-1 Jz (2.5b) 
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for the conduction electron and: 
t t t 

f io  = sin 0 diu (1 - Kdiadi,) 

with the corresponding non-linear hopping parameter: 

10327 

(2.6a) 

(2.6b) 

for the localised electron. 
The Hamiltonian restricted to d occupancy becomes : 

- hcos o sin0 dtodi,,(l + &di,)(1 - ‘cd;,di,,) + cc (2.7a) 
(ii‘)u 

with the effective atomic one- and two-particle energies satisfying: 

E = S cos 20 + V sin 20 

2 + 2~ = S + S cos245 + A V  sin 245 + $G(1 -cos 245) 

(2.7b) 

(2 .7~)  

We will need the particular form of this Hamiltonian for our discussion of stability 
in section 4, but now all we need to do is to determine the energy of our simple 
paramagnetic single-particle state: 

I P )  = n (od:od;& I O )  (2.8) 
7 k > ‘ l F  

which is 
1 

- ( P  I H I P )  =2eD0(1 - D o ) + ( Z + 2 ~ ) D ~ - 2 W c o s 2 0 D ,  [(l + ~ D o ) 2 - ~ 2 D ~ ]  
N 

- 4H cos o sin O D ,  [(I + ~ D , ) ( I  - KD,) + ~KD:]  . (2.9) 

All that is now required is to minimise this energy over the two variational parameters. 
In fact the variation over O can be performed analytically if we expand (2.9) to 

obtain 
1 

- ( P  1 H 1 P )  = D i [ S  + Scos24 + 
N 

V sin24 + iG(1 -cos2r$)] 

- WD, [ 1 - 20,(1- cos 4 )  + (D; - D;){(I - cos 4)2 + i sin2 4}] 
- 2& H D ,  sin ${Do - (1 - i cos 4 ) ( D i  - D;)} 
+ cos 20 [~sD,( I  - D,) - J Z H D ,  sin 45 cos +(D: - D:)] 
- cos 20 [ W D ,  { 1 - 20,(1 - cos 4) + (D: - D:)[(I - cos + ) 2  - i sin2 4]>] 
+ sin 20 [ ~ v D , ( I  - D,) - WD, A sin @{D, - (0,” - D;)(I - cos +)}I 

- sin 20 [ ~ H D ,  { 1 - 0,(2 - cos 4) + (D; - D:)(I - cos 4 + i sin2 $)}I 
(2.10) 

which is readily minimised over 0. The remaining minimisation must be performed 
computationally and we present the results of this in section 5 .  
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3. The localised state 

In the last section we set up a paramagnetic variational wavefunction. This state was in 
fact a single-particle state and so has single-particle ‘statistics’. If there are D, electrons 
per spin per site, then the probability of finding a vacant, singly occupied and doubly 
occupied site are; (1 - 20,(1 - Do) and D; respectively in a single-particle state. 
As was pointed out by Gutzwiller, in highly correlated systems these probabilities 
can be severely modified. For the strong-coupling Hubbard model, the strong on-site 
repulsion yields a much reduced probability of finding a doubly occupied site. In 
order to determine whether a state with modified probabilities is relatively stable, we 
determine the Hartree-Fock energy of the strongly modified ferromagnetic state where 
the probability of finding either vacant or doubly occupied sites vanishes. 

If there is less than half an electron per spin per site, Do < i, then we cannot avoid 
a vacant site and so we search for a ferromagnetic solution with no doubly occupied 
sites. We employ precisely the same technique as in section 2, where now the single- 
particle state is allowed to vary in order to optimise the energy of the ferromagnetic 
state: 

The Fermi surface is now quite different since it is unique and surrounds twice as many 
electrons. The total electron number, Go, and the total hybridisation, G,, satisfy the 
same equations as for the paramagnetic case 

( 3 . 2 ~ )  

(3.2b) 

where the only change is the chemical structure factor. For our uniform density of 
states we find that Go = 20,  and G, = 2D0(1 - 20,). 

The same effective Hamiltonian, (2.7), applies and the energy of this state is simply 

1 
- ( F  I H 1 F ) = - t W G l + c o s 2 8 [ S G , - ~ W G , ]  +sin28[VG,-HGl]  N (3.3) 

which is readily minimised over 8. We present the results of this in section 5. 
If there is more than half an electron per state per site, Do > i, then we cannot 

avoid a doubly occupied site and so we search for a ferromagnetic solution with no 
vacant sites. Now we require both of the parameters of section 2 in order to optimise 
the energy of our variational state 

Again the Fermi surface is a single quantity which is different from the paramagnetic 
case since it excludes twice as many holes. The total electron number, Go, and total 
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hybridisation, G,, now satisfy 

P I  

(3.54 

(3.5b) 

which for our uniform density of states assumption becomes Go = 20, and G, = 

The same effective Hamiltonian, (2.7), still holds true but now the energy takes the 
2( 1 - 00)(20, - 1). 

more complicated form 

1 
- ( F  1 H 1 F )  = (Go - 1) [S + Scos24 + f i  V sin24 + i G ( 1  -cos24)] N 

- i WG, [cos2 4 + sin24] - 5 H G ,  s in4cos4  

+ cos 28 [(2 - G,)S - $ WG, (cos2 4 - $ sin2 4)  - 5 H G ,  sin $J cos 41 

+ sin 28 [(2 - G,) V - & WG, cos 4 sin 4 - $ H G ,  sin2 41 (3.6) 

the minimisation over Q is straightforward but again the minimisation over 4 must be 
computed. The results of these calculations are given in section 5. 

4. Stability against coherence 

In the last two sections we have developed very particular states which are the Hartree- 
Fock solutions to the effective Hamiltonian, (2.7). We can compare the energies we 
derive in order to determine whether the itinerant solution is stable with respect to a 
'strong-coupling' solution. If we discover that the itinerant solution is stable, we can 
also ask whether the state is stable with respect to the more interesting possibilities for 
coherence inherent in the form of the effective Hamiltonian (2.7). In particular we have 
the possibility of magnetic coherence, associated with particle-hole pairs, and pairing 
coherence associated with particle-particle or Cooper pairs. This last possibility might 
lead to an electronic explanation for heavy-fermion superconductivity. 

The basic formalism for stability is the same in this treatment as it was for our 
work on the atomic limit [12]. Only the choice of local basis has changed. Since the 
effective Hamiltonian is similar and in the absence of H identical, we may simply read 
across the results. 

For singlet spin pairing of fermions, both particle-particle and particle-hole, the 
best way of describing the results is in terms of two normalised Hubbard constants [13], 
U,, and U,,. A pairing instability is indicated by a negative Us,  and a ferromagnetic 
instability occurs when U,, > l/p(yF), a form of Stoner criterion. 

For the particular parameterisation in our model we find that both effective Hub- 
bard constants satisfy 

(4 .14  
1 

U - T [ Z + b - ~ , a - R , ( ~ - ~ ~ b ) ]  
, - W  

U = 2 W cos2 Q q(1 + qD,) + 2H cos Q sin Q ( q  - K - 2 ~ ~ 0 , )  

b = 2 W cos2 Q q 2 D ,  - 4 H  sin Q cos Q ~ K D ,  

(4.1 b) 

(4.1 c) 
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where W is the renormalised band width which we are associating with the ‘heaviness’ 
of the d fermions: 

and R, is the ratio of the nearest-neighbour ‘pairing potential’ to the on-site ‘pairing 
potential’. For ferromagnetism: 

RFM = YF (4.3a) 

which comes directly from the Fermi surface whereas for pairing we find 

(4.3 b) 

because the pairing is different on different sides of the Fermi surface. For the uniform 
density of states, the density p ( y )  = i, and the results are presented in the next section 
for these stability criteria. 

Finally and perhaps of most interest, we should point out that the effective Hamil- 
tonian always leads to an instability with respect to triplet or ‘d-wave’ pairing for the 
paramagnetic solution when stable. The usual stable pairing solution finds triplet spin 
character for the pair, and only if the off-site hybridisation, H ,  dominates the band 
width, W ,  is the ‘d-wave’ solution possible. As we said in previous work, there is 
experimental evidence that heavy-fermion superconductivity may have zeros in the gap 
function [14]. 

Our variational wavefunction is constructed solely with d fermions. This state is 
not an eigenstate of the Hamiltonian, but we believe that it has a large overlap with 
the ground state when it is relatively stable. If considered in the restricted space of 
d occupancy, we expect Fermi liquid behaviour with particle-hole excitations about 
the Fermi surface. Our next consideration is the subspace projected away; that with g 
occupancy. If our state were the ground state, then the states with g occupancy would 
make up part of the excitation spectrum. We will nominally interpret the g states as 
excitations, but if these excitations drop below the Fermi energy, then we would expect 
them to become filled in place of some of the d states. This then acts as a stability 
criterion, if we determine whether the g states are above the Fermi energy or not. The 
g fermions are subject to the infinite local Coulomb repulsion, U ,  and as such are 
necessarily strong coupling if occupied. When considered as an excitation spectrum, 
the g states are necessarily single particle in character since the many-body effects are 
strong. We now proceed to calculate the energy of a g fermion in our intermediate 
valence phase, 1 P) :  

4, = ( P  I g,,Hg:, I P) - (P I H I P) (4.4) 

in order to compare it with our chemical potential 

p = e + Z D , -  Wcos2eD12q(1 + y D , ) - 2 H s i n e c o s e D , ( q - r c - q l c D o ) -  I@?, (4.5) 

which can be readily derived from (2 .7) .  
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In order to determine the energy of a g fermion, we must associate the different 
local basis states in the original basis to the corresponding states in the new basis. 
This requires a choice of relative phases, which we choose to be continuous with the 
description when the f states are empty and the d fermion becomes the c fermion 
identically. Our particular choice of basis is 

( 4 . 6 ~ )  t gi, 1 0) = (- sin e c;i, + cos e f ; )  1 0) 

for the single g fermion state at energy -e: 

for the two-particle singlet at energy S(l - cos 24) - f i  V sin 24  + i G( 1 + cos 24) 

(4 .6~)  t t  i t  
dwgio I 0) = ~ i u f i u  I 0 )  

for the two-particle triplet at energy G and 

(4.6d) 

(4.6e) 

for the three-particle state at energy S + 2G. This constitutes a description for all the 
eight states projected away in our approximation scheme. 

The contribution from the on-site Hamiltonian is straightforward, since we simply 
change the energy of the relevant site on which the g fermion sits, according to its new 
character and weighted with the probability of finding it in that configuration : 

where @’ is the effective half band width from the off-site contributions. 
The off-site phase coherence is more involved. The Hamiltonian mixes in many 

different local configurations for the g fermion, including spin flips and other ‘polaronic 
distortions’, We will not include such effects because such inclusions are against the 
spirit of this calculation. Any local change in environment will tend our ‘excited’ state 
towards the true ground state yielding more information about the deficiencies of our 
approximation scheme than about the likely excitation spectrum. We therefore only 
consider spin conserving ‘hops’ and the restricted definitions of the original basis to 
such ‘hops’ yields 

where we find two new non-linear parameters 

g ,  = 5 s i n 4 c o t d -  z(l 1 +cos@) (4.8b) 

g 2  = 5 sin 4(cosec e - cot e) - ( 1  - cos 4) ( 4 . 8 ~ )  
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for the conduction electron and 

where we find two further new non-linear parameters 

K 1  = $(COS 4 - 1) 

K~ = c o s 4 s e c Q - $ ( I + c o s 4 )  

(4.9b) 

(4.9c) 

for the localised electrons. 

we find 
It is a simple matter to determine the effective band width from these results and 

we will present the results of this excitation spectrum and related stability criterion in 
the next section. 

5. Basic behaviour of the technique and solutions 

Although our technique treats the atomic limit exactly, we know that in the limit of 
vanishing hybridisation between the localised and conduction electrons, when the two 
systems decouple, the technique fails. In order to verify that our solution has lower 
energy than this decoupled solution and is therefore relatively stable, we compare our 
upper bound with the energy of the ground state of the decoupled system 

where we can only treat the case of vanishing repulsion between the two types of 
electron, namely G = 0, and the set I and pF are chosen to fill the lowest lying states. 
The energy of this state is simply 

( 5 . 2 ~ )  1 
N 

i + D ,  > D , > D ,  (5.2b) 1 1 
- ( D  I H I D )  =--(W-2S)’-2SD, 
N 2 W  

( 5 . 2 ~ )  
1 

- ( D  I H 1 D )  = 2S(D,-, - 1) - 2 W ( D 0  - ;)(; - D o )  
N 

where D ,  = -S/ W and we are assuming the uniform density of states. Our solution is 
necessarily lower in energy than the state with an  empty localised level. If our solution 
has lower energy than I D ) ,  then we believe that the ground state has the characteristics 
of an  itinerant paramagnet without the local moments which can achieve magnetic 
coherence, if not then we believe that it will display characteristics of both. 

- ( D  I H I D )  =2SD,-2WDO(l-D,) D, > D o  

Do > $ + D,  
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If the local moment state, 1 D), has the lowest energy of the states considered, 
then we still expect a contribution from the hybridisation, V ,  but of a very special 
kind. The basic effect is that of virtual excitations into states with atoms empty of 
f electrons, yielding exchange interactions between neighbouring f moments. There 
is an energy contribution at order V 2  but the exchange interactions enter first at 
V4. If the hybridisation, V ,  is small, we expect only minor energetic modifications. 
The intermediate valence states we are considering are quite different, showing a 
definite reduction in valence due to charge transfer, combined with very different phase 
coherence. 

The g fermions are subject to the infinite repulsion, U .  As such we may think 
of them as ‘local moments’. We find that our solution can behave in an identical 
fashion to the c and f basis, where the g fermion takes the place of the f fermion. 
Such behaviour is signalled in our treatment by an instability to g occupancy. The g 
fermions tend to have a non-trivial band width and so we find the problem of how to 
fill a strong-coupling band and what magnetic coherence is to be expected. Indeed this 
problem is first met in the infinitely strong-coupling Hubbard model where it has often 
been treated but not successfully dealt with. There is the possibility of continuous 
single filling of the g states and a continuous transition between itinerant and local 
moment behaviour. There is a second possibility which is not found in many other 
treatments; a first-order transition between itinerant and local moment behaviour. This 
is signalled by an energy degeneracy between the itinerant intermediate valence state 
and the local moment state prior to the instability to g occupancy. 

We envisage three distinct types of states. Firstly the ‘intermediate valence’ states 
which are the paramagnetic metallic solutions of section 2.  Secondly the strong-coupling 
magnetic solutions of section 3. Thirdly the decoupling solutions with well defined 
local moments which interact with each other via the conduction electrons to yield the 
‘normal’ scenario of magnetic coherence induced by RKKY. The two types of magnetic 
solution are very different. In the strong-coupling solution only a certain fraction of 
the sites have magnetic moments, the other sites have singlet spin character, either 
being vacant or the two-particle mixed valence singlets. We would expect the saturated 
magnetisation to be reduced from the expected value of the free localised ‘spins’. The 
moments associated with the decoupled solution should take their free localised values. 
This seems the natural experimental technique to differentiate an ‘intermediate valence 
ferromagnet’ from an RKKY local moment ferromagnet. 

The next fairly general question we ask is: for what sort of physical situation 
does our model predict intermediate valence itinerancy? Our treatment predicts that 
the model is highly susceptible to strong-coupling magnetism. There are two regimes 
where such a strong-coupling magnetic solution is not to be expected. Firstly when the 
energy separation between the two levels, S ,  is small in comparison to the band width, 
W ,  and we expect a large number of conduction electrons in the ground state which 
then behaves as the intermediate valence paramagnet or the local moment decoupled 
system. Secondly when the hybridisation energy, V or H ,  dominates the level separation 
energy, S ,  we find that the local basis is strongly hybridised mixtures of localised and 
conduction electrons and the motion of the conduction electron component frustrates 
the magnetic coherence. This is the weakening of magnetism by ‘charge transfer’. We 
should also note that by projecting away all triplet configurations of electrons on a 
site, we are losing spin fluctuations as a source of stabilisation for the paramagnetic 
state. 

Now we consider some particular examples of the types of behaviour that our 
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Figure 1. W = 1.0, S = 0.25, V = -0.2, H = 0.0, G = 0.0. (a) Total energy calculation 
showing an itinerant state at low band filling and a ‘local moment’ state at high band 
filling. ( b )  Stability criteria showing that instability to g occupancy occurs prior to the 
total energy transition suggesting a second-order ‘transition’ (i.e. continuous behaviour). 
( e )  Valencies of the intermediate valence phases together with the many-body parameters, 
cos2 0 and cos2 I$. 

technique can display. First let us consider the case when the hybridisation between 
the two types of electrons is small. This is the case when our technique should be 
at its worst and we might expect the solution with well defined local moments to be 
preferred. In figure 1 we consider a case where the solution is predominately delocalised 
up to half filling while in figure 2 we consider a case where the solution is basically 
localised up to half filling. 

The basic type of stable phase is discerned from the total energy calculation. We 
find at high electron concentrations, as expected, that the decoupled solution with local 
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moments is relatively stable because the hybridisation energy, V ,  which would stabilise 
the intermediate valence phases is weak. For both cases we find that the paramagnetic 
intermediate valence state is relatively stable compared to the ferromagnetic strong- 
coupling state at low band filling but that this situation is reversed at concentrations 
with a higher number of localised electrons. Analysis of the stability criteria show that 
the strong-coupling ferromagnet is relatively stable prior to the instability to itinerant 
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ferromagnetism. Some of the most interesting quantities to consider are the variational 
parameters 6 and 4. We present the fractional decompositions of the optimal basis in 
terms of the original states, together with the ‘valence’, P ,  defined by the number of 
localised electrons in the system: 

P = 20,(1- D,) sin’ o + 002 sin’ 4 (5.3a) 

for the itinerant paramagnet and 

P = Go sin’ 0 Go < 1 (5.3b) 

(5.3c) P = ( 2  - G,) sin2 0 + (G, - 1) sin2 4 G, > 1 

for the strong-coupling ferromagnet. Note how in almost all the situations we depict, 
the valence of the strong-coupling magnetic state is higher than that of the intermediate 
valence paramagnet demonstrating, as expected, that it is easier to develop magnetic 
coherence with the localised electrons than without them. 

6. Phase transitions in cerium metal 

There is a symmetry-preserving phase transition in metallic cerium which is thought to 
be associated with a change in the number of localised f electrons on the cerium atom. 
The transition is between a ‘magnetic’ phase, y-Ce, which under pressure at quite high 
temperature changes first order into a non-magnetic phase. cl-Ce. with an appreciably 
smaller volume. The valencies of y-Ce and r-Ce are thought to be 3.06 and 3.67, 
respectively [15]. The simple physical picture which explains these observations is that 
at the transition much of the single f electron in the Ce3+ core which makes up the 
y-Ce phase transforms into the s,d-electron conduction band orbital leaving behind the 
Ce4+ core which makes up the r-Ce phase. This leaves two questions to be answered 
by theoretical physics: why? and what is the best way to model such a transition’? 

The simple descriptions of this transition have centred on the Falicov-Kimball 
model. Two pieces of physics emerged in the early treatments. Firstly the short-range 
Coulomb repulsion between the two types of electron, G. is crucial. The localised 
electrons are transformed into conduction electrons at low temperatures in order to 
avoid this energy penalty. Secondly the entropy associated with the spin degeneracy 
of the localised electrons competes with this at higher temperatures. As a function 
of temperature this competition is a physical explanation for the transition. When 
considered as a function of pressure, the dominant effect is modelled by a pressure 
dependence to the energy gap between the two types of electrons, S, because of the 
very different spatial character of the two wavefunctions and the dependence (or lack 
of it) on volume. Together these features give a consistent picture for the basic physics. 

There are two quite important questions overshadowing this explanation. Firstly 
it is not clear whether the transition would be first or second order. The initial work 
suggested a first-order transition as required, but more sophisticated treatments have 
both laid doubt and confirmed this result which seems to be strongly dependent on 
the shape of the conduction band density of states [16]. Secondly and much more 
disturbing is the lack of hybridisation between the localised and conduction electrons 
which only interact via the Coulomb repulsion, G, in the early treatments. Weak 
hybridisation has been included by the standard ‘virtual bound state’ approach [17] 
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but this is essentially a perturbative addition to the existing picture. What is the likely 
effect of a stronger hybridisation, V ,  on the simple picture which has already emerged? 

What does the technique developed in this article predict? Our work is predomi- 
nately at zero temperature where the original treatments are trivial and do not allow 
first-order transitions. Even for the case of vanishing Coulomb repulsion between 
the two types of electrons, G = 0, we still find the possibility of a first-order transi- 
tion which has a simultaneous change in localised electron number. The transition is 
the simple transition between the intermediate valence itinerant state and the strong- 
coupling magnetic state already mentioned. If we assume the simple correspondance 
between pressure and level separation, S ,  then the situation corresponding to that 
between figures 1 and 2 illustrates such a transition at half filling (namely Do = i). The 
transition described by our technique is in fact more akin to a simple ‘Mott’ transition. 
Discrete changes in the atomic configuration probabilities ensure that such a transition 
is first order if direct. There is the possibility of a second-order transition through 
an intermediate phase which for our analysis corresponds to itinerant magnetism. For 
the cases we have analysed the transition is always first order at zero temperature. 
The physical picture for our transition is that of the hybridisation, V ,  stabilising the 
itinerant intermediate valence state when the localised level is pushed close to the 
chemical potential by the pressure, but the strong-coupling magnetic phase is stable 
when the localised level is lower down below the chemical potential. The stabilisation 
of the itinerant state by the Coulomb repulsion, G, is replaced by the stabilisation of 
the itinerant state by charge transfer due to the hybridisation, V ,  which is related to 
the Kondo effect and mixed valence singlet. 

When considered as a function of temperature, however, the technique cannot 
describe the entropy changes well at all. The simple choice of restricted basis does not 
allow much entropy for the strong-coupling state. Indeed we would expect straightfor- 
ward loss of magnetism as a function of temperature and stabilisation of our itinerant 
state! The phase diagram of metallic cerium is opposite to this! The important missing 
element is entropy. Rather than being less entropy associated with the localised f 
electron, the large angular momentum degeneracy at the relevant temperature yields 
a higher entropy. We find that it is very difficult to associate the phase of y-Ce with 
our simple strong-coupling magnet at higher temperatures and any inclusion of a large 
spin degeneracy immediately complicates a simple description for the hybridisation, V .  
In order to describe temperature dependence even for our over simplified model, one 
requires the states that have been projected away. 

The conclusion from this discussion is that in order to get a first-order transition, 
it is not necessary to have the conduction electrons stablised at low temperatures by 
the Coulomb repulsion, G. The low-temperature itinerant phase may also be stabilised 
by the hybridisation, V ,  and the first-order character of the phase transition would be 
attributed to a sharp change in many-body correlations, along the lines of a ‘Mott’ 
transition associated with a sudden decrease in the probability of one of the atomic 
configurations. 

The model description of the cr-Ce phase envisioned by Falicov at low temperatures 
is dominated by the repulsive energy, G. Let us consider what our technique would 
predict for this limit. For our model, our description in this limit should fairly well 
describe the two-particle states which ought to be pairs of conduction electrons. For 
the itinerant description with one electron per site, Do = i, this ensures that half of the 
electrons are conduction electrons at zero temperature! If the valence of a-Ce is 3.67 at 
low temperatures, then the single-particle states would need to be localised electrons 
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to make up the valence! We would need to be in a regime where the single-particle 
localised level were lower than the chemical potential! The Falicov-Kimball model 
tends to predict too high a valence for the a-Ce phase, essentially to obviate this rather 
unlikely scenario. The resolution of this paradox seems to be the hybridisation, V .  
Rather than transitting from the nearly localised y-Ce phase into a nearly itinerant a-Ce 
phase, the system transits into an intermediate valence a-Ce phase. The large Coulomb 
repulsion, G, is still required to force the first-order transition in other treatments. 

Our conclusion from this discussion is that a-Ce ought to be described as an 
intermediate valence state with paramagnetism stabilised by the hybridisation, V .  Do 
we really need the Coulomb repulsion, G, to ensure a first-order transition? Surely 
a careful consideration of the intermediate valence phase will produce an ‘order 
parameter’, related to many-body correlations, to explain a first-order transition even 
in the absence of the repulsion, G. 

To obtain a reasonable valence of 3.67 in our description, we need a fairly small 
value of G to ensure f character in the two-electron state at zero temperature. 

7. Phase transitions in CeNi,Pt,-, and CeNi,Pd,-, 

There are several reasons why these particular materials might be a good testing ground 
for the Anderson lattice model restricted to spin half. 

The lattice structure is orthorhombic and so at low enough temperatures, T < 50 K, 
the crystal field splitting of the relevant J = 3 multiplet leads to only two relevant states 
for the localised f electron on the cerium atom. In most cerium compounds showing 
intermediate valence behaviour, the crystal field is cubic yielding less degeneracy 
breaking. 

The compound CeNi [18] is known to be an intermediate valence material and 
based upon lattice parameters the cerium valence is predicted to be z 3.3-3.5 yielding 
about 0 .74 .5  of an f electron over a temperature range of 3 0 M  K. Despite an even 
number of electrons in a unit cell, the material is a metal and it is believed that the 
conduction band states at the Fermi surface are strongly hybridised mixtures of nickel 
3d which are below the Fermi surface and cerium 5d which are near the Fermi surface. 

The compounds CePt and CePd do not show similar behaviour. On the contrary 
these materials become ferromagnetic at low temperatures, T, < 10 K, well within the 
regime where there are only two relevant localised states. Once again these materials 
are metals but now the conduction electrons at the Fermi surface are thought to be 
strongly hybridised mixtures of platinum (palladium) 5d (4d) and cerium 5d electrons. 
The 5d (4d) electrons are higher in energy than the corresponding 3d electrons in nickel 
and so the simple physical picture is that the chemical potential has been raised from 
its value in CeNi making valence fluctuations on the cerium site less favourable and 
yielding fairly well defined localised spins which become magnetically aligned at low 
temperatures. 

These two simple pictures are just the two natural states we have analysed for 
the Anderson lattice. A strongly hybridised mixed valence state showing metallic 
paramagnetism down to very low temperatures for CeNi and a strong-coupling metallic 
ferromagnet for CePt and CePd. 

The fact that these two types of materials crystallise in the same structure allows 
the possibility of moving continuously from one type of behaviour towards the other 
by alloying. These experiments have recently been performed [19] with very similar 
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behaviour found for both systems. As one moves away from CePt, the magnetism 
is first strengthened, T, weakly increases, and then collapses sharply at about a 
concentration of CePto,,Nio,9. The basic scenario presented with these data is that 
of a competition between the RKKY interaction inducing magnetic coherence and the 
Kondo effect stabilising a set of singlets made up of each of the localised ‘spins’ and 
the conduction band. The transition is viewed as ‘smooth’ and passes through some 
intermediate regime where both effects are present simultaneously. We have quite a 
different viewpoint. 

We see the transition at zero temperature as being very sharp and not smooth at 
all. Firstly there is a well defined ‘kink’ in the cell volumes which seems to separate 
two very different volume dependences. Secondly the loss of magnetic coherence is 
very sharp occurring over a variation of less than five per cent. Thirdly and perhaps 
most instructive is the specific heat data. The materials with a supposedly high 
magnetic transition temperature near the intermediate valence transition show a tiny 
discontinuity in the specific heat. This is symptomatic of the magnetic transition being 
restricted to only a small fraction of the alloy. We believe that there is a fairly sharp 
transition at or around the stochiometry of CePt,,,Nio, from a paramagnetic mixed 
valence phase to a ferromagnetic strong-coupling phase at zero temperature. The 
‘intermediate valence’ behaviour of the materials at higher temperatures do not detract 
from this picture and only add to it, being associated with the extra entropy of the 
itinerant phase over the strong-coupling magnetic phase. We should bear in mind that 
there is no elastic energy built into our simple electronic model and this will severely 
effect the expected changes in valence and smoothness with which they occur. 

8. Phase transitions in CeSi,-, and CeSi,-,Ge, 

The experimental situation in these alloys is very similar to that found in the CeNi,Pt,-, 
alloy system. CeSi, [20] corresponds to CeNi and finds the cerium atom in an 
intermediate valence state. CeGe, corresponds to CePt where we find ferromagnetism 
but with a reduced saturated magnetisation from the free cerium ion value. Even the 
transition temperature is very similar being in the region of 10 K. Alloying Ge in place 
of Si is completely analagous to alloying Pt or Pd for Ni because the substitutions are 
for ‘isoelectronic’ elements lower down the same group in the periodic table. For the 
CeNi,Pt,-, system we find a sharp transition at x z 0.9 whereas for CeSi,-,Ge, [21] 
we find a remarkably similar transition at x % 0.6. 

Any explanation for one system should be applicable to the other without any 
significant changes. 

One important point to realise is that a significant volume effect is missing in the 
CeSi, alloys, an effect which is central to any mixed valence determination for the Ce. 
We have nothing to say about this. 

The omission of Si from the lattice in CeSi,-, seems to have a very similar effect 
to replacing the Si by Ge and we also have little to say about this. 

One of the pieces of experimental evidence that the simple RKKY picture finds 
very difficult to reconcile is the fact that the oberved saturation magnetisation is much 
reduced from any reasonable free ion value, even one unreasonably crystal field split 
to minimise the expected moment! We are predicting two very different types of 
ferromagnetic state. As well as the state with local moments on all the sites, we are 
predicting a state with well defined moments on a much reduced fraction of the sites; 
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the strong-coupling ferromagnet. The remainder of the sites are found with ‘mixed 
valence’ singlet configurations where the local moment is locally compensated by a 
conduction electron spin. We suggest that the small moments observed in CeGe, and 
CePt are in fact strong-coupling ferromagnetic solutions rather than local moment 
ferromagnets, in which case the reduced moment is explained by the large quantity of 
sites which have singlet ‘bound’ local moments. Our calculations also suggest a likely 
change in the valence of the cerium atom at such a transition which ties in with the 
change in slope observed for the volume dependence of CeNi,Pt,_, but not with the 
rather passive CeSi,-,Ge, system. 

9. Conclusions 

Before we go on to explain what we can do, let us survey the important physics that 
we most certainly cannot explain or model. 

Firstly we are restricted to studying the case of a spin half local moment. The 
only materials that we can hope to get to grips with are those where crystal field 
effects restrict the relevant localised levels to a doublet. Secondly we are unable to 
model any of the important spin orbit effects for either the localised levels or the 
conduction electrons. In practice this means that there is no hope of any quantitative 
understanding of the systems coming from our work but only qualitative explanations 
and physical interpretation. Thirdly we totally ignore all volume effects and as such 
do not get any compensatory changes in elasticity to reduce our electronic predictions. 
Fourthly and by far the most important restriction of our work is to indecently low 
temperatures. Our technique involves a projection onto a subset of the initial states, 
a subset we believe to be relevant at low temperatures. Unfortunately we do not 
attempt to describe the states projected away, and the interesting changes in behaviour 
exhibited as functions of temperature ought to be associated with fluctuations into the 
very degrees of freedom we are not describing. The only temperature regime we can 
hope to describe is that for any magnetic coherence amongst the degrees of freedom 
remaining in our description. In practice we are restricted to T < 50 K. 

The physical picture which we are attempting to establish is that of two very 
different regimes. The ‘normal’ situation where the localised levels are removed from 
the Fermi surface is that of well defined local moments on each site which interact 
via the conduction electrons yielding magnetic coherence at low temperatures. This 
is the picture of rare earth magnetism induced by RKKY interactions which has been 
established for several decades. The second regime which has the experimental label of 
mixed or intermediate valence is where the charge degrees of freedom of the localised 
electrons are relevant to the low temperature physics. They become mixed with the 
conduction electron charge degrees of freedom to form a single itinerant description 
with none of the properties of a local moment system. In our description this itinerant 
band composed predominately of localised electrons can show paramagnetic behaviour 
down to zero temperature as is observed in some systems or can show forms of strong- 
and weak-coupling magnetism, which have previously been described as a competition 
between RKKY and the Kondo effect in a rather unconvincing picture. Our description 
yields a natural reason for a much reduced magnetic moment for a system with an 
essentially filled localised level whereas the competing description sees a localised 
moment partly magnetised and partly in a singlet configuration with the surrounding 
conduction electrons. To some extent we have developed a way of describing a system 
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which can show a competition between magnetism and the ‘Kondo effect’ (and induced 
singlets) on a iocal level. It is important to realise that the mixing of states in our 
description is on a much shorter length scale than in the Kondo effect and is only 
connected to it in a very interpretative way and not directly. 

We have developed a technique for describing the spin half Anderson lattice in 
terms of a single fermionic degree of freedom per site at low temperatures. We can 
justify our description for some parameterisations in the sense that we find lower 
energy for our ground state than any of the natural competing states that we have 
considered. The dominant contribution stabilising our intermediate valence state is the 
hybridisation between the localised and conduction electrons which must be strong 
enough to promote the localised electrons above the chemical potential, as might be 
expected. 

There are four basic types of behaviour we consider. Firstly there is ‘normal’ 
local moment behaviour when our technique fails and pure itinerant behaviour is not 
stable. Secondly there is itinerant metallic paramagnetic behaviour corresponding to 
the intermediate valence state. Thirdly we have a strong-coupling magnetic solution, 
which does not have the usual local moment behaviour and yields reduced saturated 
magnetic moments. Lastly we have weak pairing instabilities in the intermediate valence 
state which ought to lead to a form of correlation mediated superconductivity. 

Although we find great difficulty describing the change in behaviour between lo- 
cal moments and intermediate valence, we can readily describe a transition between 
magnetic and non-magnetic intermediate valence states. We suggest that these trans- 
formations yield a qualitative explanation for the phase transitions in the isoelectronic 
intermediate valence alloys CeNi,Pt,-,, CeNi,Pd,-,, CeSi,-,Ge, and CeSi,-,. Our 
description is a much more specific model, when compared to existing statements 
invoking competition between RKKY and Kondo effects, and gives predictions for very 
low temperature excitation spectrum which should be that of a Fermi liquid in both 
the paramagnetic and ferromagnetic phases. 

We obtain an interesting pairing instability, but these correlations are restricted to 
a rather radical limit. 

If we risk a sortie above absolute zero, we suggest that the breakdown of our 
description is due to the enormous amount of entropy in the f-moments and that we 
should expect a transition into a ‘local moment’ phase at quite low temperatures. Is 
this an explanation for the so-called coherence temperature in these systems? 

Finally, let us return to the ‘theme’ of this article: ‘coherence’. The energy scale for 
the intermediate valence state, in this article, is the hybridisation potential, V or H ,  
and nothing to do with ‘spin fluctuations’. The other major concern was for an ‘order 
parameter’ to mark the change of behaviour. How about 9 and 4? 
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